
978-1-7281-3401-7/18/$31.00 ©2021 IEEE

 2021 IEEE International Conference on Engineering,

Technology and Innovation (ICE/ITMC)

Feature Removal on Software Platforms
Discontinued Core Features on Browser Platforms – A Case Study on Mozilla Firefox

Benedict Bender, Andrzej Szadowiak

Chair of Business Informatics, esp. Processes and Systems

University of Potsdam

Potsdam, Germany

{bebender, szadowiak}@uni-potsdam.de

Abstract—Software platforms allow for the extension of

features by third-party contributors. Thereby, platform

innovation is an important aspects of platforms attractiveness for

users and complementors. While previous research focused the

introduction of new features, the aspect of feature removal and

discontinued features on software platforms has been disregarded.

To explore the phenomenon and motivations for feature removal

on software platforms, a review of recent literature is provided. To

illustrate the existence of and motivations for feature removal, a

case study of the browser platform Mozilla Firefox is presented.

The results reveal feature removal to regularly occur on browser

platforms for user- and developer-related features. Frequent

reasons for feature removal involve unused features, security

concerns, and bugs. Related motivations for feature removal are

discussed from the platform owner’s perspective. Implications for

complementors and users are highlighted.

Keywords—Software Platforms; Discontinued Features;

Feature Removal; Lean Core; Platform Innovation; Browser

Platform; Mozilla Firefox

I. INTRODUCTION

Software platforms with their open paradigm allow for the
extension of additional features from third parties [1]. Through
contributions, third-party developers extend functionality
beyond the platform owner’s core [1]. Thereby, software
platforms allow platform owners to deliver more features than a
single entity could provide on its own [2]. Complementors
provide functionality in form of packaged code fragments, also
referred to as ‘extensions’ or ‘add-ons’ [1], [3].

Platform innovation is considered a success factor for digital
platforms [4]. Platform innovation from a user perspective
involves the introduction of new platform features. Platform
users evaluate different platforms by their functionality [5].
Related functionality in the form of platform features can be
either provided by the platform core or third-party complements.
While the platform core usually provides functionality relevant
for the general audience, third-party extensions focus on
specialized functionality [6], [7]. In this regard, platform owners
are highly interested to attract complementors to their platform
to ensure its competitiveness [8].

Digital platforms are known to progress over time [9].
Typically, platform owners regularly release updates to their
core platform, that introduce new features. Core updates thereby
affect platform features as well as development resources [10].
While the aspect of feature introduction in the context of
platform innovation on software platforms is covered by
research studies [4], [8], [10], the research regarding the removal

of software features has been limited to identifying unused and
least profitable software features in general [11]. Similar to
feature introduction, the removal of features may occur during
platform updates that regularly occur and affect the platform
ecosystem participants.

Feature removal is closely related to the idea of a lean core.
Software platforms with their modular architecture have the
inherent challenge to maintain an optimal infrastructure [6], [9],
[12]. Following Olleros [6] the optimal core is the smallest core
that allows for the greatest functionality of the platform.

While previous research studied approaches to achieve high
levels of innovation in the form of contributions, the aspect of
the lean core was not considered as a central aspect. In this
regard, aspects such as platform openness [8], [13], [14],
governance mechanisms [15], [16], and design of development
resources [10], [17], [18] were discussed. To achieve greater
levels of innovation with the smallest possible platform core,
this study addresses the aspect of feature removal on software
platforms. Platform owners are interested in how to achieve the
smallest platform core that serves this purpose. Feature removal
as part of platform optimization can contribute to that.

Achieving a lean core can be either realized by (a) not
introducing additional features to the platform core or (b) by
regular removal of features from the platform core. Stopping to
introduce is considered as unlikely as innovation is an important
factor of platforms competitiveness [4]. Moreover, many studies
proved platform owners to regularly introduce new features to
the platform core [3], [19]. Furthermore, platforms owners also
introduce features similar to those provided by platform
complementors [7], [20]. The removal of features on the other
hand, can be used to exclude features that do not serve the
purpose of the platform (anymore) and are of less importance
[11]. For example, features that are provided in superior form by
complementors may also be removed from the platform core.

Software platforms serve two sides. That is the group of
users for which platforms offer functionality (user-related) and
the group of developers for which boundary resources are
provided to allow for complements in the form of platform
modules (developer-related). The removal of features may occur
for both types of features. The corresponding implications vary.
For instance, the removal of user-related features may result in
missing functionality for users. On the other hand, the removal
of developer-related features may result in extensions to stop
working. In this regard, feature removal is relevant for the
platform ecosystem participants. As such, ecosystem

978-1-7281-3401-7/18/$31.00 ©2021 IEEE

 2021 IEEE International Conference on Engineering,

Technology and Innovation (ICE/ITMC)

stakeholders are interested whether platform owners remove
features during software platforms evolution as this may affect
their usage of and contribution to the platform [21]. To address
this aspect this study aims to explore:

RQ1: Do software platforms remove core features during
their evolution?

Assuming platform owners to remove features from their
platform as part of their platform management, the question why
platform owners do so is of interest. The underlying motivations
are of interest for ecosystem participants given that different
implications result for them. While feature removal from a
maintenance perspective may lead to increased development
efforts for complementors, removing features to foster
innovation results in decreased competition and additional
demand. As such this contribution aims to explore:

RQ2: Why do platform owners remove core features from
software platforms?

To explore the research questions, two research methods are
used. First, a literature survey is used to integrate findings from
related literature. Second, a case-study approach is used to
explore the occurrence of feature removal in the browser
domain. Web browsers have become powerful platforms,
offering value to a variety of customers, ranging from its main
users to independent developers that create third-party add-ons.
As such, they are a prime example of platform-centric
ecosystems in modern software [7], [22], [23]. Modern web
browsers can offer specialized functionality to its users via third-
party addons, more generally described as ‘modules’ [1] that are
clearly distinguishable from its platform’s core. Concerning
innovation activities, previous research has shown that web
browser owners often expand their core by including features
that have been previously only accessible via third-party addons
[7], [20]. Concerning the research interest, it is to be explored if
feature removal occurs on browser platforms. Mozilla Firefox is
used for the case study analysis. Firefox was released in 2004 as
an open-source and community-driven browser. The main
competitor of Firefox is Google’s Chrome and Chromium-based
web browsers. Together, they account for the majority of users
on the web.

The contribution is structured in six sections. The following
section briefly covers related literature. In section three, the
literature survey approach and analysis regarding feature
removal is presented. Section four presents the case study on
feature removal. Section five discusses the results and section
six concludes the paper.

II. RELATED LITERATURE

This section briefly presents central concepts and literature
for this contribution. The aspect of feature removal can be
situated in the research domain of software platforms.
Especially, the group of external software platforms [24] are
known for their extensibility by complementors that result in
dependencies [9]. Following the notion of Tiwana et al. [1] a
software platform is understood as: “The extensible codebase of
a software-based system that provides core functionality shared
by the modules that interoperate with it and the interfaces
through which they interoperate”.

Therefore, software platforms make use of the associated
platform ecosystem. The platform ecosystem being related to an
open platform infrastructure is of importance for its growth and
competitiveness [25], [26]. Following Gawer and Cusumano
[27], a platform ecosystem is understood as: “The network of
innovation to produce complements that make a platform more
valuable”. A software platform ecosystem mainly consists of
three roles: the platform owner, complementors, and customers.
The platform owner as the central entity serves both sides, i.e.
complementors and users. Complementors build their modules
on top of the existing platform. To do so, platform owners
provide boundary resources for application development. In this
regard the notion of Ghazawneh and Henfridsson [15] is
followed whereby, boundary resources “[…] typically consist of
a software development kit (SDK) and a multitude of related
APIs” [10]. For instance, browsers platforms can provide add-
on developers with specialized APIs reducing their cost of
development [28].

For the group of platforms users, platforms offer
functionality through the platform core that can be extended by
modules provided by third-party developer. The close
relationship between the three main players results in mutual
dependence of the key stakeholders. In this regard, the
importance of network effects, is to be mentioned [29]. As such,
the competition among platforms largely depends on their
platform ecosystem and the ability to attract complementors and
users to their platform [8], [26].

The provision of third-party functionality in the context of
software platforms is realized achieved through capsuled code-
fragments in the form of modules. Following [1] a module is
understood as „An add-on software subsystem that connects to
the platform to add functionality to the platform“. In this regard,
the term of functionality can be further separated in a group of
features that is combined through a software module.

As defined by ISO/IEC/IEEE26515:2011 a “software feature is
a functional or non-functional distinguishing characteristic of a
system, often an enhancement to an existing system”. Since
software platforms are comprised of a stable core surrounded by
variable peripheral components [30], these value-providing
features can be part of the core, or the surrounding modules [26].
Mozilla Firefox as an open software platform allows
independent third-party developers to create these modules [22],
that serve as distinct parts of the platform, and can be designed
and implemented independently [1], [31]. Furthermore, the
architecture of the platform enables the platform owner to add
new features, modify existing ones, or remove them completely
[30]. The paper focusses on features as functional characteristics
that were part of the platform core and removed afterwards.

Differentiating between user features and developer features,
user features in web browsers include UI-elements, accessibility
options, translations, cross-device syncing, or third-party
addons. Examples for developer features would mainly include
the access to developer tools in form of debuggers, APIs, or
interfaces, but also the support of external APIs and protocols.

In this regard, the removal of features is meant as the
complete removal from the platform's core, rather than just
disabling it temporarily, changing its position, or obscuring its

978-1-7281-3401-7/18/$31.00 ©2021 IEEE

 2021 IEEE International Conference on Engineering,

Technology and Innovation (ICE/ITMC)

existence from the user. The sole announcement of a feature
deprecation will not be counted as feature removal.

III. LITERATURE REVIEW

As a first step towards a better notion regarding the
occurrence of and rationale for feature removal on software
platforms, a literature review is conducted.

A. Methododical Approach

A systematic literature review following the guidelines of
[32], [33], and [34] is conducted. As a first step, the review scope
is defined [33]. The topic of feature removal is situated in the
research area of software platforms [1]. Moreover, the focus
might be narrowed to the group of extensible open software
platforms, since these allow for contribution of third parties [24].
In contrast to closed software platforms the implications of
feature removal may lead to different reactions of platform
ecosystem participants.

The literature screening revealed that the aspect of feature
removal and discontinued features has not been considered so
far. As there was little to none studies on the removal of software
platform features and its reasons, it was necessary to approach
the topic from a broader theoretical angle.

To identify potentially relevant articles four databases were
queried for literature retrieval. These are: Scopus, Google
Scholar, JSTOR, and Microsoft Academic. The search terms
composed of the keyword combination were designed more
broadly, given that the aspect of feature removal is not present
as the literature screening revealed. To query the four databases
the search term: “software platform” AND (“third-party” OR
“extensions” OR "third party") AND (“functions” OR
“features”) was used. As the domain of software platforms
allowing for third-party contributions emerged around 2008,
literature studies from 2008-2020 were included in the literature
survey.

Following the initial search, 396 records were identified
(JSTOR: 71, Google Scholar: 232, Scopus: 58, Microsoft
Academic: 35). After duplicate removal, the exclusion criteria
were applied (excluding thesis, pre-prints). Resulting in 279
papers. The remaining paper were screened for their relevance
(using a title and abstract review) which resulted in 23 papers for
detailed screening. Finally, 13 papers were identified to be
relevant for this research. During literature analysis and
screening, nine additional papers were added to the group of
potentially relevant studies. These include highly influential
papers, as well as the results of the for- and backward search.

B. Results

The literature analysis revealed the aspect of feature removal
to be uncommon among software platform literature. Therefore,
the identified studies were reviewed for closely related topics.
Table 1 illustrates the concepts that cover aspects of relevance
feature removal. Among these are the aspect of platform
openness as central foundation for complementors contribution.

TABLE I. LITERATURE ANALYSIS RESULTS

Source

Concepts

Platform

Innovation

Platform

Openness

Comple-

mentors

Platform

Core

Bender et al.

2019 [7]

X X X X

Boudreau 2010

[8]

X X X -

Choi et al. 2019
[13]

X X X -

Khomh et al.

2012 [36]

- X - X

Olleros 2008
[6]

X X X X

Parker et al.

2018 [14]

X X X X

Tåg 2009 [37] - X X -

Tan et al. 2020
[28]

X X X -

Tiwana et al.

2010 [1]

X X X X

Rickmann et al.
2014 [29]

- - X -

Zhou et al. 2018

[23]

X X X X

Zhu 2019 [20] X - X X

Most studies consider the relationship between platform
owners and complementors, as well as the platform openness
and innovation, which are all interconnected [6], [8], [35].
Barely half of them touched upon the concept of the platform
core. Regarding feature removal, the platform core as the most
central element, is of great importance.

1) Platform Innovation
Platform innovation is acknowledged to be a critical success

factors for software platforms [4]. Software platforms in their
role as innovation platform serve as the basis for complements
to be built upon the platform [24]. As such platform innovation
is composed of the functionality provided by the platform core
as well as contributed third-party complements [7]. Thereby,
platforms are able to provide more innovation than a single
entity could achieve alone [2]. Innovation from the platform
owner, as well as the complementors standpoint is essential for
the growth of a software platform.

Following Nambisan [25] digital innovation management is
understood as "the practices, processes, and principles that
underlie the effective orchestration of digital innovation" [25].
Platform owners are responsible to conduct platform innovation
management. Effective orchestration includes the decision
which entity (platform owner through the core or third parties
through contributions) should provide which functionality.
While the introduction of functionality in terms of innovation
has been discussed [4], [8], [10], the aspect of feature removal
has not. The aspect of feature removal is part of platforms
innovation activities.

2) Platform Openness
Just as much as innovation, the openness of a platform plays

an important role, as it has been shown to be linked to a
platform’s innovation and growth [8] (Boudreau 2010). Open
software platforms allow for contributions from third parties. In
contrast to that, closed software platforms limit or restrict the

978-1-7281-3401-7/18/$31.00 ©2021 IEEE

 2021 IEEE International Conference on Engineering,

Technology and Innovation (ICE/ITMC)

possible external innovation as a driver for growth [13], [24],
[38].

Besides the strict distinction between open and closed, more
granular levels of openness are distinguished [8], [39]. Software
platforms allow to access platform resources through related
boundary resources (see complementors section). Previous
studies reveal more open platforms to show more growth and
variety in their offerings, while more closed platforms show less
and less diverse offerings [8]. Yet, platform openness doesn’t
always need to go hand in hand with platform growth, as is the
case with Apple’s iOS [35].

Concerning discontinued features, platform openness on a
general level is important since external platforms may allow to
replace discontinued features through contributed modules. In
this regard, discontinuing features may open a market for third-
party contributors. This signal may motivate third-party
contributors to offer complements to replace the discontinued
features. As such, feature removal may lead to increased
innovation and competition among developers [40]. While
entering fields in which the platform owner is active is less
attractive for contributors [7], [20], [23], domains which
platform owners leave may be of interest. However, this may
only apply for features that are still relevant for platform users.
From a complementors perspective, feature removal may be
seen as a signal from the platform owner [41].

3) Software Platform Complementors
Software platforms as multi-sided platforms are typically

surrounded by the platform ecosystem. Important stakeholders
are: the platform owner as the provisioning entity, the platform
user as the demanding entity, and the complementors as the
group of contributors [26]. This close relationship between the
three main players results in network effects, meaning that the
value and attractiveness of the platform depends on a good
relationship between the players, and rises the more it is used by
complementors and users [29]. As such, software platforms
themselves serve at least two sides. For the group of platform
users, platforms offer core functionality which can be extended
by the available third-party applications.

For the group of developers, platforms provide boundary
resources that allow for external innovation in the form of
contributions [10]. Boundary resources refer to “the software
tools and regulations that serve as the interface for the arm’s-
length relationship between the platform owner and the
application developer” [15]. They note that in “software
platform settings, such (boundary) resources typically consist of
a software development kit (SDK) and a multitude of related
APIs” [10]. While SDKs are used during development, the
group of APIs allows complements to access platform (core)
resources during application usage.

In the realm of web browsers providing APIs for third-party
developers is a popular strategy, since providing “a good API
makes the platform more modular by providing well-defined
interfaces for the application to the platform, hence reducing
development costs for the third-party content provider” [28].
Moreover, contributors are known to consider SDK quality
during platform selection [21]. Moreover, previous studies
found increased usage of boundary resources to allow for
enhanced success and customer satisfaction [18].

4) Platform Core
The platform core serves as the main centralized part of a

software platform and should, by design, provide value for its
customers and allow complementors to build their previously
mentioned ‘modules’ on top of it [35]. [6] describes the optimal
core as follows: "The optimal platform core is the leanest core
capable of eliciting from an innovative market or community all
the missing elements to bring the platform to its highest degree
of functionality”.

While some call for a lean core to maximize scalability and
evolvability [6], [31], studies identified the platform core to
expand over time. Increased functionality may be the result of
innovation activities of the platform owners as well as entering
complementary markets [20]. This entry into complementary
spaces and expansion of a software platform’s core is also
referred to as platform coring and can have positive effects for
the platform. Depending on the type of functionality user-
focused or developer-focused different implications emerge [3].
Still, platform owners must think about the balance between
features provided by the platform core and those offered by
third-party developers, as such entry into complementary spaces
can often be seen as hostile [7] and cause complementors to be
less willing to innovate [20], [35]. From a theoretical angle, the
core features that platforms provide should be designed to be
relevant for the mass of users [3], [6].

Through complementary market entry platform owner enter
contributors market spaces. As such, feature removal can be
considered as the opposite. For user-related features in specific,
feature removal may open markets for complementors as core
functionality is reduced.

C. Motivations for Feature Removal

As a result of the literature analysis, different motivation
could be identified for feature removal from a theoretical
standpoint.

First, maintaining a lean core may be the result of
architectural considerations on platform architecture [6].
Feature can be removed over time to achieve a lean core.
Following [6], the optimal core allows for the highest degree of
functionality while being as small as possible to serve this
purpose. Following this idea, the platform core should serve as
the foundations for complements while not containing all the
features themselves. More specifically, the focus should be on
developer-related boundary resources to allow for complements
and access of platform resources rather than extensive user
features and a closed platform.

Second, platform hygiene might be a motivation for feature
removal [3], [42]. Similar to the platforms themselves, user
requirements change over time. As such, features may be
outdated from a functional perspective or receive less attention
from users. Thereby, platform owner may be interested to
remove features that are not employed by users given that their
maintenance is relatively costly for a small user base.

Third, stimulating innovation may be a motivation for
feature removal. Given that platform owners are privileged with
regard to access to platform resources on the one hand and
customer access on the other, competing with core functionality
may be unattractive for complementors [20]. Given that, core

978-1-7281-3401-7/18/$31.00 ©2021 IEEE

 2021 IEEE International Conference on Engineering,

Technology and Innovation (ICE/ITMC)

functionality is usually available for users directly, extended
functionality through complements requires search and setup
effort [18], [43]. Through feature removal, platform owners
open up a formerly unattractive market for complementors.
Through feature removal platform owner might signal that
related product spaces are not covered by platform owner
anymore [41]. This might stimulate innovations by
complementors. Even though they might compete amongst
them, related competition is among equal developers. As such,
discontinuing features can stimulate platform innovation.

Fourth, feature may be removed if better alternatives exist.
While that the platform owner has to provide a wide range of
features, contributors add highly specialized domain features
through their contributions. Complementors were found to be
highly innovative [4]. Moreover, many complementors may
compete among customers by providing similar features through
their contributions [40]. This may result in the situation, that
complements provide better features than the platform core. As
a result, the platform owner may consider giving up related
functionality. Especially, if the features are of minor strategical
importance. In this case, feature removal may be the result of
better alternatives.

Fifth, feature removal may be motivated by focussing
resources. Platforms owners have to handle many tasks in their
role as platform leader [27]. Moreover, the importance of
features may vary over time. While especially innovative
features may be introduced for showcase purposes, the
motivation to provide related features may diminish over time.
This may lead to feature removal. Furthermore, more attractive
other features may be of interest for the platform owner which
may lead to a focus of resources on related attractive fields [44].
Assuming powerful, but still limited resources for the platform
owner, this may lead to feature removal to focus on more
attractive domains.

Table 2 provides an overview of motivations for feature
removal and related rationales.

TABLE II. MOTIVATIONS FOR FEATURE REMOVAL

Motivation Rationale Concepts

Lean core Maintain a lean core as a basis for

innovation.

[6], [31]

Platform

hygiene

Remove less important features from

the platform core. [3], [42]

Stimulate

innovation

Stimulate innovation by opening up

market for contributors [41]

Better

alternatives

Remove features that are not necessary,

since better alternatives exist. [40]

Resources
focus

Focussing resources on attractive and
important domains. [44]

IV. CASE STUDY

In addition to the results of the literature review, a case study
is used to approach the research questions. To identify if feature
removal occurs (RQ1) and if so for which reasons features are
removed (RQ2), the example of Firefox is used.

A. Method

The method of a descriptive single case study about Mozilla
Firefox was chosen, as it will allow to gather data on an

appropriate level of detail and interpret it given the results of the
literature review [45].

Mozilla Firefox was chosen for the case-study as it fulfils the
requirement of a software platform [22]. The extensible browser
allows for the contribution of third-party modules termed add-
ons [1]. Users are able to gather related add-ons through the
platform marketplace [38].

The browser used for the case study is required to be actively
developed in order to identify feature changes. In this regard,
Firefox is known for their regular update policy that frequently
introduces new features. Moreover, Firefox is well-suited for the
case study as Mozilla is known for their active communication
to and engagement with the developer community. An open
information policy is useful to gather insights regarding the
reasons for feature removal (RQ2). Considering the browser
market share, Firefox, Safari and Chrome account for the
majority of desktop users. Prior studies already considered
Firefox as a software platform [7], [22].

B. Data and Classification

To ensure the validity of the collected data (Baxter et al.
2008), only official statements from Mozilla were used to
identify removed features and classify the reason for feature
removal. These include: the newest release notes, Mozilla’s own
blog, or threads on Bugzilla regarding suggestions and
explanations for the removal of certain features.

All Mozilla Firefox stable desktop releases, up to the current
(as of 31.07.2020) version 79.0 were systematically searched for
removed features using the official release notes, as well as
Bugzilla threads that resulted in the removal of a feature.
Removal of one or multiple features may, but not have to, occur
with every new version. 45 removed features could be identified.
For four removed features no explanation for their removal
provided by Mozilla was given and will thus be ignored.

To address the research interest concerning the reasons for
feature removal, the removed features were classified in eight
different categories. Those were inductively developed by
screening and classifying related announcements. Features were
removed for security concerns (Security), a previously
deprecated feature that has already been replaced by another
(Deprecation), a feature deemed obsolete due to other features
fulfilling the same purpose or the feature not having any more
advanced value and thus providing the user with no additional
value (Obsolete). Further features are removed that have not
been used by complementors or users of the browser (Unused,
measured by Mozilla in x% of the entire user base), features
slowing down the performance of the browser (Performance),
features that are too costly to maintain (Costs), features that are
not working as intended (Bugs), and competitor pressure,
stemming from Google Chrome. As there are several channels
that Mozilla uses to announce these removals (Blog, Bugzilla,
Support, Release Notes), some features can have more than one
reason for its removal named. Still, if only a single reason was
provided, it should be assumed that this doesn’t exclude any
other underlying reasons for the removal of a certain feature.

 Additionally, data was gathered from Bugzilla when it was
found to more accurately explain the rationale behind the
removal of certain features, as well as showcasing the decision-

978-1-7281-3401-7/18/$31.00 ©2021 IEEE

 2021 IEEE International Conference on Engineering,

Technology and Innovation (ICE/ITMC)

making process of Firefox’ main contributors. These threads
mostly start with suggestions to remove a certain feature, after
which multiple contributors discuss, whether such removal is
justified. Alternatively, threads start with contributors or
community members asking about already removed features and
get the explanation retroactively.

C. Results

All removed features were documented with the respective
version number and the reason for its removal. The feature list
with the classification can be found in Table 3. Overall, almost
every full release cycle (for Firefox being at around 4 weeks),
Mozilla removes a feature it deems to not be needed anymore
using the reasons listed in Table 3 and Figure 1. The three most
frequently named reasons for removing a feature are security
concerns, deprecated, or unused features, accounting for over
half of all the reasons.

Concerning unused user features, Mozilla’s has been shown
to wait until the usage for a given feature is low enough to not
impact their overall user base, before deciding to remove a
feature. Still, this approach is only used if there are no other
reasons for the removal. As far developer-related features go,
supplying complementors with alternative tools to those that
were deprecated is an important part of Mozilla’s community
management and usually included in the removal
announcements as helpful information for third-party
developers.

However, many of those features can be considered ‘dead on
arrival’, only increasing the core’s complexity and increasing
costs. A prime example is the ‘asynchronous plugin
initialization’ that was developed since 2014 and added to
Mozilla Firefox in 2015 in version 40.0, yet didn't gain
popularity due to several bugs, and was ultimately removed
three years later, while providing almost no value to users during
that time.

Fig. 1. Overview of Reasons for Feature Removal on Firefox

The security aspect is a major concern for the Mozilla
Foundation. Security is part of their mission statement to making
the web an accessible resource. As such, the focus on security
concerns regarding removed features are reasonable.

TABLE III. FEATURE REMOVE FROM MOZILLA FIREFOX

Ver. Feature Reason Type

3.0 predefined add-ons whitelist Unknown User

21.0 E4X-Support Deprecation Dev

23.0 <blink> element Obsolete Dev

23.0 "Enable JavaScript", "Load images

automatically" & "always show the
tab bar" options

Obsolete User

24.0 Support for loading Sherlock files Deprecation Dev

24.0 “Revocation Lists” feature Performanc

e

User

28.0 SPDY/2 Support Deprecation other

29.0 tabs-on-bottom Costs User

31.0 CAPS infrastructure removed for
specifying site-specific permissions

Unknown User

32.0 trust bits for 1024-bit root

certificates

Security User

33.0 JavaScript Debugger Service Obsolete Dev

33.0 Proprietary window.crypto

properties/functions

Security User

35.0 Proprietary window.crypto
properties/functions

Security User

36.0 "-remote" option Unused Dev

38.0 Support for autocomplete=off for

username/password fields

Competitor

pressure

User

39.0 "-remote" option Unused Dev

39.0 Support for insecure SSLv3 for

network communications

Security User

39.0 Support for RC4 except for

temporarily whitelisted hosts

Security User

41.0 Support for XPCOM components in
extensions

Deprecation Dev

44.0 "ask me everytime" cookie option Bugs Dev

44.0 Support for RC4 decipher Security User

45.0 Tab Groups (Panorama) Unused User

47.0 Firefox User Extension Library Unused Dev

47.0 "click-to-activate" plugin whitelist Deprecation User

49.0 Firefox Hello Unused /

Costs

User

49.0 Support for OS X- 10.6-10.8 and

SSE processors

Costs User

50.0 Support for libavcodec older than
54.35.1

Security User

51.0 SPDY/3.1 Support Competitor

pressure

other

51.0 (be) locale Unused User

52.0 Battery Status API Security Dev

52.0 Netscape Plugin API-Support Deprecation User

53.0 Support for 32-bit Mac OS X Costs User

53.0 Support for processors older than
Pentium 4 & AMD Opteron on

Linux

Costs User

56.0 Asynchronous plugin initialization Bugs User

57.0 Toolbar Share button Unknown User

62.0 Description field for bookmarks Unused /

Bugs

User

63.0 Never check for updates" option Security User

63.0 "Open in Sidebar" feature Unknown User

67.0 Upload and Sharing of screenshots

via Firefox Screenshots server

Bugs User

68.0 unmaintained translations Unused User

70.0 Always active" feature for flash

plugin content

Security User

70.0 Aliased theme properties Deprecation Dev

77.0 Support for blocking images from

individual domains

Unused /

Bugs

User

77.0 browser.urlbar.oneOffSearches
preference

Unused User

78.0 TLS 1.0 and TLS 1.1 Security /

Deprecation

User

0 2 4 6 8 10

Performance

Competitor pressure

Obsolete

Unknown

Bugs

Cost

Deprecation

Unused

Security

978-1-7281-3401-7/18/$31.00 ©2021 IEEE

 2021 IEEE International Conference on Engineering,

Technology and Innovation (ICE/ITMC)

Moreover, features were classified regarding their intended
target group being either platform user or third-party developer.
The related classification can be found in Table 3. Most features
(32) removed are targeted towards the group of users.

Multiple examples exist of planned or already delivered
feature removals which were later rolled back due to causing
bugs on the platform (e.g., proprietary window.crypto
properties/functions). This illustrates the need for a lean core
with loosely coupled modules around it as described in [6].
Software platforms should thus leverage the power of
modularity in their design, to prevent changes in one part of the
program to cause problems in another [46], and enable the
seamless exchange of existing modules and the integration of
new ones.

TABLE IV. MOTIVATIONS FOR FEATURE REMOVAL

Motivation Rationale Example

Lean core Maintain a lean core as a basis
for innovation.

v24.0 Support for
Sherlock files

v52.0 NPAPI support

Platform
hygiene

Remove less important features
from the platform core.

v23.0 features except
<blink> (see table 3)

Stimulate

innovation

Stimulate innovation by opening

up market for contributors

Better
alternatives

Remove features that are not
necessary, since better

alternatives exist.

v45.0 Tab Groups
Feature

Resources
focus

Focussing resources on attractive
and important domains.

v21.0 E4X-Support

Among the removed features, different motivation could be
identified in Firefox case study. Removing features to obtain and
maintain a lean core was identified as a frequent motivation. For
instance, the support for Sherlock files in version 241. More
recent examples involve the NPAPI plugins in version 522.

Mozilla removed different features in version 23 as the
incorrect use of the features may cause the browser to stop
working properly3. Easy usage and proper function is important
for Mozilla [7]. By removing potential conflicting features,
Mozilla maintained platform hygiene.

Mozilla also removed features such as the tab grouping
feature and directly mentions the availability of third-party add-
ons to provide that functionality. Moreover, a dedicated help
page presents different options4.

Regarding the motivation of resource focus, the example of
the E4X-Support is to be mentioned. The following discussion
statement exemplifies the motivation “E4X slows down our
development and increases the security attack surface”5.

V. DISCUSSION

A. Theoretical Contributions

Given that feature removal is unexplored in terms of
practical evidence on software platforms, the results are among
the first to indicate the actual occurrence of feature removal. By
use of the practical case-study the paper addresses the first

1 https://mail.mozilla.org/pipermail/firefox-dev/2013-April/000329.html
2 https://blog.mozilla.org/futurereleases/2015/10/08/npapi-plugins-in-firefox/
3 https://bugzilla.mozilla.org/show_bug.cgi?id=851702

research question regarding the occurrence of feature removal.
The results indicate that the Firefox platform regularly removes
features from the platform core. Moreover, the results indicate
that user-related as well as developer-related features are
removed. In this regard, the study contributes by discussing the
different effects depending on which type of functionality (user
or developer) is removed.

As a second contribution, the study provides insights in the
reasons and motivations for feature removal. By means of a
literature survey, motivations for the removal of platform core
features are identified and systematized. From a theoretical
standpoint, different motivations were identified. These include
motivations being related to the modular structure of software
platforms (lean core), the importance of features over time
(platform hygiene, resource focus), as well as competition-
related considerations (alternatives). Moreover, platform owners
may use feature removal to foster external contributions
(stimulate innovation).

Apart from theoretical considerations, reasons for feature
removal were identified through the case study. Addressing
RQ2, the paper contributes by highlighting different motivations
and their actual occurrence as well as their relative importance.
The analysis reveals that unused features, security issues as well
as feature deprecation is among the most frequent reasons for
feature removal.

As a third contribution, the contribution points out the
different implications depending on the type of functionality
removed. Table 5 provides an overview of the different effects
depending on the type of functionality being removed. Related
implications and the parties affected vary. The removal of user-
related features may be substituted through third-party
complements being available on the platform. In contrast, the
removal of developer-related features is not similarly
substitutable given that only the platform owner is able to allow
for the access of platform core features and is responsible to
provide related boundary resources. In this regard the removal
of developer-related features is to be handled with care given
that the demotivation of developer might have negative
consequences for further contributions [17].

TABLE V. FEATURE REMOVAL EFFECT DEPENDING ON FEATURE TYPE

Feature User-related Developer-related

Description

Features employed by

users directly

Features that serve developer

to realize complements (e.g.

extensions, modules)

Example

Firefox Hello (audio and
video calls directly in the

browser)

Battery Status API
(information on the power

status of the main battery)

Effect

Features are no longer
available to user in the core

application directly

Features are no longer
available to be used by

complements

Implication
(if used /

required)

Seach for and use of third-

party alternatives (if exists)

Need to realize similar
feautes within their module

context (if possible)

4 https://support.mozilla.org/en-US/kb/tab-groups-removal
5 https://groups.google.com/g/mozilla.dev.tech.js-engine/c/yYQyMCcMf-
0/discussion

978-1-7281-3401-7/18/$31.00 ©2021 IEEE

 2021 IEEE International Conference on Engineering,

Technology and Innovation (ICE/ITMC)

B. Practical Implications

The implications are differentiated according to the platform
ecosystem stakeholders. For the group of platform owner, the
case study revealed to remove features that are of minor
importance. Given that feature removal results in decreased
value from a functional perspective, the effect is not assumed to
be perceived directly positively. Considering however that in
most cases Mozilla usually ensures only features with either a
low user base or security vulnerabilities are removed from the
core, it is unlikely that the removal of features would be met with
much disapproval by the respective participants on the platform.
In this regard, platform owners are well-advised to focus on
features of minor importance during their removal.

Given the structural similarities to complementary market
entry and platform coring, related implications can be partly
adopted for feature removal [3], [42]. Platform owners were
found to focus on complements of high popularity for platform
inclusion [7], [20]. Considering feature removal as an inversion
to complementary market entry and platform coring, as features
are removed from the core, the focus on less popular features is
likely. Moreover, the results apply from a content perspective
for instance for the aspect of security concerns. It is to be
expected, that keeping security vulnerabilities as part of the core
would negatively impact the relation to the platform’s users and
complementors. Furthermore, as less complex and more generic
features tend to be cored [7], higher complexity of core features
is more likely to be removed due to bugs or the associated costs,
just like more specialized features tend to result in lower user
numbers that in turn result in the removal of said features.

The group of third-party developers are most likely to be
affected by feature removal. The results reveal several
developer-related features are to be removed from the Firefox
platform. Complementors are required to adapt their extensions
accordingly to ensure their operation. Given that platforms are
highly competitive environments [40], developers are well-
advised to adapt their extensions prior to upcoming platform
changes, e.g. feature removal to ensure to retain their user base
[47]. Especially within a platform environment, switching costs
are considered to be relatively low [48].

C. Limitations

This study is subject to several limitations. Regarding the
case study, the focus on a single, yet prominent platform limits
generalizability. While a single case study is assumed to be
reasonable as a first approach towards exploring the
phenomenon of feature removal, the platform chosen is specific
in some ways. Firefox as an open-source browser is known for
their engagement and collaboration with the developer
community [7], [22]. As such, it is questionable in how far the
results concerning the reasons for feature removal are applicable
to commercial platform environments such as for example
mobile device platforms [9], [10]. The literature review
conducted was rather focused in the scope of literature
considered. A broader focus, for instance by considering
research from software development and economics literature
might have revealed additional reasons for feature removal.

Finally, the combination of reasons for feature removal and
the underlying motivation were hypothesized by the authors
based on the results of the literature review. While the actual

motivation for feature removal remains to be further explored,
likely motivations were assumed for illustration purposes.

D. Future Research

Several aspects remain open for future research. To achieve
greater levels of generalizability, future studies may focus on
more and different types of software platforms to explore the
phenomenon of feature removal. Aside from similarities and
differences among platforms, general evolution patterns as for
instance the removal of features within platform domains could
be identified. Apart from theoretical considerations, the
perspective of the stakeholders involved is to be explored. First
and foremost, this includes the perspective of the platform owner
as the entity to remove features. Moreover, the position of the
affected parties, i.e., platform user (for user-related features) and
third-party developer (for developer-related features) is to be
explored to gain a better understanding on the effects of feature
removal. Moreover, specific types of feature removal are to be
identified during future explorations. While feature removal was
considered on a functional level, platforms were found to
discontinue large parts of boundary resources. For instance,
Firefox switched their development resources to the
WebExtensions standard (with version 57 in November 2017).
While this allows for cross-platform availability of related add-
ons, existing add-ons needed to be adopted to the new standard
in order to be further available on the browser platform.

VI. CONCLUSION

Software platforms allow for the extension of features by
third-party complementors. Innovation is an important success
factor regarding platform attractiveness for users and
contributors. While previous research focused the introduction
of new features as part of innovation activities, the phenomenon
of feature removal and discontinued features on software
platforms was not addressed.

To explore the phenomenon and motivations for feature
removal on software platforms, a review of recent literature is
provided which identified different motives for feature removal,
i.e., lean core, platform hygiene, stimulate innovation, better
alternatives, and resources focus. To illustrate the existence of
and motivations for feature removal, a case study of the browser
platform Mozilla Firefox is conducted.

The results reveal feature removal to regularly occur on
browser platforms for user- and developer-related features.
During the 16 years of operation, Mozilla Firefox has
continuously removed features from its platform’s core. Mozilla
removed 45 features that were either deemed unused,
deprecated, too costly to maintain, obsolete, posing a security
risk for its users, not working as intended, or resulting from
competitor’s pressure. Implications for complementors and
users are discussed. In this regard, the aspect in how far feature
removal contributes to platform success and which degree of
feature removal is optimal to foster innovation, remains to be
explored.

REFERENCES

[1] A. Tiwana, B. Konsynski, and A. Bush, ‘Platform evolution: coevolution

of platform architecture, governance, and environmental dynamics’, Inf.
Syst. Res., vol. 21, no. 4, pp. 675–687, 2010.

[2] T. Eisenmann, G. Parker, and M. Van Alstyne, ‘Platform envelopment’,

978-1-7281-3401-7/18/$31.00 ©2021 IEEE

 2021 IEEE International Conference on Engineering,

Technology and Innovation (ICE/ITMC)

Strateg. Manag. J., vol. 32, no. 12, pp. 1270–1285, 2011.

[3] B. Bender and N. Gronau, ‘Coring on Digital Platforms-Fundamentals
and Examples from the Mobile Device Sector.’, presented at the

International Conference on Information Systems, Seoul, South Korea,

2017.
[4] A. Kankanhalli, H. Ye, and H. H. Teo, ‘Comparing Potential and Actual

Innovators’, MIS Q., vol. 39, no. 3, pp. 667–682, 2015.

[5] N. Haile and J. Altmann, ‘Value creation in software service platforms’,
Future Gener. Comput. Syst., vol. 55, pp. 495–509, 2016.

[6] X. Olleros, ‘The lean core in digital platforms’, Technovation, vol. 28,

no. 5, pp. 266–276, 2008.
[7] B. Bender, C. Thim, and F. Linke, ‘Platform Coring in the Browser

Domain-An Exploratory Study’, presented at the International

Conference on Information Systems, Munich, Germany, 2019.
[8] K. Boudreau, ‘Open platform strategies and innovation: Granting access

vs. devolving control’, Manag. Sci., vol. 56, no. 10, pp. 1849–1872,

2010.
[9] M. de Reuver, C. Sørensen, and R. C. Basole, ‘The digital platform: a

research agenda’, J. Inf. Technol., vol. 33, no. 2, pp. 124–135, 2018.

[10] B. Eaton, S. Elaluf-Calderwood, C. Sørensen, and Y. Yoo, ‘Distributed
Tuning of Boundary Resources: The Case of Apple’s iOS Service

System’, MIS Q., vol. 39, no. 1, pp. 217–243, 2015.

[11] A. Janes and V. Lenarduzzi, ‘Towards an Approach to Identify Obsolete
Features based on Importance and Technical Debt’, in Euromicro

Conference on Software Engineering and Advanced Applications

(SEAA), 2020, pp. 389–393.
[12] A. Gawer and R. Henderson, ‘Platform owner entry and innovation in

complementary markets: Evidence from Intel’, J. Econ. Manag. Strategy,
vol. 16, no. 1, pp. 1–34, 2007.

[13] G. Choi, C. Nam, and S. Kim, ‘The impacts of technology platform

openness on application developers’ intention to continuously use a
platform: From an ecosystem perspective’, Telecommun. Policy, vol. 43,

no. 2, pp. 140–153, 2019.

[14] G. Parker and M. Van Alstyne, ‘Innovation, Openness, and Platform
Control’, Manag. Sci., vol. 64, no. 7, pp. 3015–3032, 2018.

[15] A. Ghazawneh and O. Henfridsson, ‘Balancing platform control and

external contribution in third-party development: the boundary resources
model’, Inf. Syst. J., vol. 23, no. 2, pp. 173–192, 2013.

[16] T. L. Huber, T. Kude, and J. Dibbern, ‘Governance practices in platform

ecosystems: Navigating tensions between cocreated value and
governance costs’, Inf. Syst. Res., vol. 28, no. 3, pp. 563–584, 2017.

[17] L. Xue, P. Song, A. Rai, C. Zhang, and X. Zhao, ‘Implications of

Application Programming Interfaces for Third‐Party New App
Development and Copycatting’, Prod. Oper. Manag., vol. 28, no. 8, pp.

1887–1902, 2019.

[18] B. Bender, ‘The Impact of Integration on Application Success and
Customer Satisfaction in Mobile Device Platforms’, Bus. Inf. Syst. Eng.,

no. 62, pp. 515–533, 2020.

[19] J. Foerderer, T. Kude, S. Mithas, and A. Heinzl, ‘Does platform owner’s
entry crowd out innovation? Evidence from Google photos’, Inf. Syst.

Res., vol. 29, no. 2, pp. 444–460, 2018.

[20] F. Zhu, ‘Friends or foes? Examining platform owners’ entry into
complementors’ spaces’, J. Econ. Manag. Strategy, vol. 28, no. 1, pp.

23–28, 2019.

[21] H. J. Kim, I. Kim, and H. Lee, ‘Third-party mobile app developers’
continued participation in platform-centric ecosystems: An empirical

investigation of two different mechanisms’, Int. J. Inf. Manag., vol. 36,

no. 1, pp. 44–59, 2016.
[22] A. Tiwana, ‘Evolutionary Competition in Platform Ecosystems’, Inf.

Syst. Res., vol. 26, no. 2, pp. 266–281, 2015.

[23] G. Zhou, P. Song, and Q. Wang, ‘Survival of the fittest: understanding
the effectiveness of update speed in the ecosystem of software

platforms’, J. Organ. Comput. Electron. Commer., vol. 28, no. 3, pp.

234–251, 2018.
[24] A. Gawer and M. A. Cusumano, ‘Industry platforms and ecosystem

innovation’, J. Prod. Innov. Manag., vol. 31, no. 3, pp. 417–433, 2014.

[25] S. Nambisan, K. Lyytinen, A. Majchrzak, and M. Song, ‘Digital
Innovation Management: Reinventing innovation management research

in a digital world.’, MIS Q., vol. 41, no. 1, 2017.

[26] P. Song, L. Xue, A. Rai, and C. Zhang, ‘The ecosystem of software
platform: A study of asymmetric cross-side network effects and platform

governance’, MIS Q., vol. 42, no. 1, pp. 121–142, 2018.

[27] A. Gawer, M. A. Cusumano, and others, Platform leadership: How Intel,

Microsoft, and Cisco drive industry innovation, vol. 5. Harvard Business
School Press Boston, MA, 2002.

[28] B. Tan, E. G. Anderson Jr, and G. G. Parker, ‘Platform pricing and

investment to drive third-party value creation in two-sided networks’,
Inf. Syst. Res., vol. 31, no. 1, pp. 217–239, 2020.

[29] T. Rickmann, S. Wenzel, and K. Fischbach, ‘Software ecosystem

orchestration: The perspective of complementors’, presented at the
American Conference on Information Systems, Savannah, USA, 2014.

[30] C. Y. Baldwin and C. J. Woodard, ‘The architecture of platforms: A

unified view’, in Platforms, markets and innovation, vol. 32, Edward
Elgar Cheltenham, 2009.

[31] C. Y. Baldwin, K. B. Clark, K. B. Clark, and others, Design rules: The

power of modularity, vol. 1. MIT press, 2000.
[32] A. P. Siddaway, A. M. Wood, and L. V. Hedges, ‘How to do a systematic

review: a best practice guide for conducting and reporting narrative

reviews, meta-analyses, and meta-syntheses’, Annu. Rev. Psychol., vol.
70, pp. 747–770, 2019.

[33] J. vom Brocke et al., ‘Reconstructing the giant: On the importance of

rigour in documenting the literature search process’, presented at the
European Conference on Information Systems, Verona, Italy, 2009.

[34] J. Webster and R. T. Watson, ‘Analyzing the Past to Prepare for the

Future: Writing a Literature Review’, MIS Q., vol. 26, no. 2, pp. xiii–
xxiii, 2002, doi: 10.1.1.104.6570.

[35] G. Parker, M. Van Alstyne, and X. Jiang, ‘PLATFORM

ECOSYSTEMS: HOW DEVELOPERS INVERT THE FIRM’, MIS Q.,
vol. 41, no. 1, pp. 255–266, 2017.

[36] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams, ‘Do faster releases
improve software quality? an empirical case study of mozilla firefox’, in

IEEE Working Conference on Mining Software Repositories (MSR),

2012, pp. 179–188.
[38] J. Taag, ‘Competing platforms and third party application developers’,

Commun. Strateg., no. 74, Art. no. 74, 2009.

[38] A. Ghazawneh and O. Henfridsson, ‘A paradigmatic analysis of digital
application marketplaces’, J. Inf. Technol., vol. 30, no. 3, pp. 198–208,

2015.

[39] A. Benlian, D. Hilkert, and T. Hess, ‘How open is this Platform? The
meaning and measurement of platform openness from the

complementers’ perspective’, J. Inf. Technol., vol. 30, no. 3, pp. 209–

228, 2015.
[40] S. Kajanan, N. Pervin, N. Ramasubbu, K. Dutta, and A. Datta, ‘Takeoff

and sustained success of apps in hypercompetitive mobile platform

ecosystems: An empirical analysis’, presented at the International
Conference on Information Systems, Orlando, USA, 2012.

[41] P. Hukal, O. Henfridsson, M. Shaikh, and G. Parker, ‘PLATFORM

SIGNALING FOR GENERATING PLATFORM CONTENT.’, MIS Q.,
vol. 44, no. 3, 2020.

[42] W. Wen and F. Zhu, ‘Threat of platform-owner entry and complementor

responses: Evidence from the mobile app market’, Strateg. Manag. J.,
vol. 40, no. 9, pp. 1336–1367, 2019.

[43] R. M. Müller, B. Kijl, and J. K. Martens, ‘A comparison of inter-

organizational business models of mobile app stores: There is more than
open vs. closed’, J. Theor. Appl. Electron. Commer. Res., vol. 6, no. 2,

pp. 63–76, 2011.

[44] F. Zhu and Q. Liu, ‘Competing with complementors: An empirical look
at Amazon.com’, Strateg. Manag. J., vol. 39, no. 10, pp. 2618–2642,

2018.

[45] R. K. Yin, ‘Case study research: design and methods (ed.)’, Appl. Soc.
Res. Methods Ser., vol. 5, 2003.

[46] D. S. Evans, A. Hagiu, and R. Schmalensee, Invisible engines: how

software platforms drive innovation and transform industries.
Cambridge, Mass: MIT Press, 2006.

[47] L. Selander, O. Henfridsson, and F. Svahn, ‘Capability search and

redeem across digital ecosystems’, J. Inf. Technol., vol. 28, no. 3, pp.
183–197, 2013.

[48] Y. Park and Y. Koo, ‘An empirical analysis of switching cost in the

smartphone market in South Korea’, Telecommun. Policy, vol. 40, no. 4,
pp. 307–318, 2016.

